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Abstract-There are two volumetric heat sources in a liquid-metal sliding electrical contact for a homopolar 
device : Joulean heating and viscous dissipation. The Joulean heating is created by the presence of electric 
currents; the viscous dissipation results from the motion of the liquid metal and is enhanced by mag- 
netohydrodynamic (MHD) effects. In a homopolar device, the liquid metal is confined to a small gap 
between the perimeter of a rotating disk and the surrounding static surface. The maximum temperature 
achieved within the liquid metal is significantly larger for an MHD flow than for an ordinary hydrodynamic 
flow, a flow in the absence of a magnetic field. Information concerning the temperature distribution within 
the liquid metal and solid parts of a homopolar device will result in the design of efficient and operational 

sliding electrical contacts. 

1. INTRODUCTION 

HEAT TRANSFER in liquid metals with electric currents 
and magnetic fields differs considerably from heat 
transfer in electrically insulating fluids and in con- 
ducting solids, because both Joulean heating and vis- 
cous dissipation act as volumetric heat sources. 
Whether the viscous dissipation or Joulean heating 
dominates depends on, among other parameters, the 
total current as well as the strength and orientation of 
the magnetic field [ 11. Unlike ordinary hydrodynamic 
(OHD) flows, the velocity field is determined, in part, 
by the electromagnetic (EM) body forces, j* x B*, 
and the current density is determined, in part, by the 
induced electric field, u* x B*. Here, j* is the dimen- 
sional electric current density, II* is the dimensional 
velocity and B* the dimensional flux density of the 
local magnetic field. As a consequence, the viscous 
dissipation is increased over that for OHD flows due 
to the MHD-enhanced velocity gradients. There are 

instances in which the Joulean heating and viscous 
dissipation are so large that significant temperature 
gradients arise in spite of the large thermal con- 
ductivity of liquid metals. One example of this 
phenomenon occurs in liquid-metal sliding electrical 
contacts for homopolar machines. With large electric 
currents and strong magnetic fields, large temperature 
gradients develop within a small region of liquid metal. 

Homopolar generators and motors are high-current, 
low-voltage, DC electromechanical energy converters.’ 
Typically, solid copper disks (or rotors) are mounted 
on a shaft, and the tip of each rotor is shrouded by a 
stationary copper surface (or stator). Sliding electrical 

j’The opinions and conclusions are solely those of the 
authors and do not necessarily reflect the opinions and con- 

clusions of the U.S. Government. 

contacts, which provide low-resistance current paths 
between the rotor tips and shrouding stators, may 
carry DC current densities in excess of 10’ A m-* 
between the outer periphery of each rotor and stator 
surface. A liquid metal; such as the eutectic mixture 

of sodium and potassium (NaK), in the narrow gap 
between the rotor tip and concentric stator surface 
acts as a sliding electrical contact. Since NaK has a 
large electrical conductivity, 0 = 2.4 x lo6 S m- ‘, and 
a small dynamic viscosity, ,u = 6.5 x 10m4 Pa s-l, a 
liquid-metal sliding electrical contact has an extremely 
low electrical resistance, produces very little drag on 
the disk because of its low viscosity and forms an 
excellent electrical contact with copper. When the disk 
begins to rotate, the liquid metal is carried by viscous 
drag to fill the gap around the entire periphery of 
the disk. As the speed increases, centrifugal forces 
produce a relatively uniform distribution of liquid 
around the periphery. 

While NaK is an excellent electrical and thermal 
conductor, its electrical conductivity is still roughly 
one-thirtieth that of solid copper, and electric current 
densities of 10’ A m-’ produce considerable Joulean 
heating in each sliding electrical contact. The viscous 
dissipation, which is associated with a typical velocity 
change of 90 m s- ’ across a gap of 0.1 mm and the 
very large shear rates in the electromagnetically driven 
fluid motions, can be comparable to the Joulean heat- 
ing. For a typical motor-generator set, the Joulean 
heating and viscous dissipation in the liquid-metal 
sliding electrical contacts generally account for 
roughly half the total losses. The heat generated in the 
liquid metal must be transported through the stator 
and/or rotor to coolant channels. A number of recent 
studies have determined the liquid-metal motion, 
Joulean heating and viscous dissipation in sliding elec- 
trical contacts with arbitrary levels of electric current 
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NOMENCLATURE 

;: 
dimensionless width of the free surface Greek symbols 
dimensionless half-width of the rotor face E small convergence parameter 

B magnitude of the flux density of the local ‘1 coordinate aligned with the magnetic 
magnetic field field 

/I electric current density stream function 0 angle between the local magnetic-field 
I total dimensionless electric current per vector and the y-axis 

unit length li the thermal diffusivity 

j electric current density vector p dynamic viscosity 
k thermal conductivity L’P magnetic permeability 
L dimensional length of the radial gap 1’ kinematic viscosity 
M Hartmann number P density 
N interaction parameter 0 electrical conductivity 
PC>\ Peclet number 4 electric potential function 
R dimensionless rotor radius R angular velocity of the rotor. 

RI, magnetic Reynolds number 
s dimensionless width of the side stators 
T temperature Subscripts 
tK dimensionless length between the rotor 

tip and the coolant channel 
LM liquid metal 
R rotor 

ts dimensionless thickness of the axial 
s stator. 

stator 

u velocity vector 

.Y azimuthal coordinate 

1’ radial coordinate 

Z axial coordinate. 
Superscript 

* a dimensional quantity. 

between the rotor and stator and with local magnetic 
fields of arbitrary strength and orientation [l-4]. 
However, the temperature distribution associated 
with the heat transfer from the liquid metal, through 
the rotor and stator, to the coolant channels was not 
previously determined. In this paper, we will present 
results for the temperature distribution. To under- 
stand the nature of the temperature distribution, we 
need to consider the magnetic field, the liquid-metal 
motion and the current density distribution. 

Superconducting magnet coils produce a non- 
uniform, skewed magnetic field with radial and axial 
components. The liquid-metal region of each sliding 
electrical contact is so small that the local magnetic 
field can be treated as uniform. However, a homo- 
polar machine usually has more than one contact, 
each with different local magnetic-field orientations. 
The electric currents in the solid parts produce a small 
azimuthal magnetic field which we neglect. In the 
liquid metal, the characteristic ratio of the induced 
magnetic field to the applied magnetic field is the 
magnetic Reynolds number. R, = p,,aQL*R, where 
/lr,, R, L, and R are the magnetic permeability, the 
angular velocity of the rotor, the radial distance 
between the concentric rotor and stator surfaces. and 
the ratio of the rotor radius to 15, respectively. Since 
a typical value of R,, is 0.03, we neglect the induced 
magnetic field. Therefore the applied magnetic field, 
which is uniform, has arbitrary radial and axial 
components. 

A non-axisymmetric MHD flow can develop due 
to two mechanisms: an irregular concentric stator 
surface and gravitational field effects. An irregular 
stator surface creates a variation in the primary vel- 
ocity in the azimuthal direction [5]. All solid surfaces 
treated here are taken to be smooth so that they do 
not induce a non-axisymmetric flow. Gravitation 
causes, at most, a small perturbation in the axisym- 
metric flow for the typical parameters of a liquid-metal 
sliding electrical contact [2]. Therefore, we neglect 

gravitational effects and treat only axisymmetric flows 
in which all variables are independent of the azimuthal 
coordinate. 

The axisymmetric liquid-metal consists of a primary 
flow involving the azimuthal velocity and a secondary 
flow involving the radial and axial velocities. The pri- 
mary flow is driven by the rotor-surface motion and 
by the EM body force due to the magnetic field and 
the electric currents between the rotor and stator. The 
radial and axial components of the electric current 
density produce an azimuthal EM body force either 
in the direction of rotor rotation or in the opposite 
direction. The azimuthal velocity produces a radial 
centrifugal force which drives the secondary flow. The 
radial and axial velocities interact with the magnetic 
field to drive an azimuthal electric current which pro- 
duces an EM body force opposing the secondary flow. 
While the azimuthal velocity is always comparable 
to the rotor-tip velocity, U = RRL, the characteristic 
secondary-flow velocity, 
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pQ2RL pn 
us = 7 = aB2 u, 

is obtained by equating the centrifugal force, 
p(QRL)2/RL, to the EM body force opposing the 
secondary flow, aU,B’. The density of the liquid metal 
is denoted by p. 

Two key dimensionless parameters that govern the 
flow are the Hartmann number M and the interaction 
parameter N, defined by 

N= 
CT2B4 

p2n2R’ 

M2 and N are the characteristic ratios of the EM 
body force to the ‘viscous force’ and ‘inertial force’, 
respectively. With this definition of the interaction 
parameter, U, = U/J’(NR). Since the how is axisym- 
metric, the only convection of both primary and 
secondary-flow momentum is due to the secondary 
flow which diminishes as the magnetic field strength 
increases. For large values of N, the magnitudes of 
the primary flow variables are si~ificantly greater than 
the magnitudes of the secondary flow variables, and 
the secondary-flow momentum transport can be 
neglected. In other words, the primary azimuthal 
motion is decoupled from the secondary flow and is 
fully developed. The only inertia term that remains 
is the centrifugal force, which appears in the radial 
momentum equation. For liquid-metal sliding elec- 
trical contacts, the interaction parameter is sufficiently 
large that the N >> 1 approximation is valid [6]. Two 
previous papers [2,3] present primary-flow solutions 
for N >> 1 and for various combinations of magnetic- 
field orientation, Hartmann number and net electrical 
current between the rotor and stator. We use the 
results of these past efforts to calculate the Joulean 
heating and viscous dissipation. 

For the heat transfer problem, there is an additional 
parameter, the Peclet number. Since the temperature 
distribution is also axisymmetric, the Peclet number 
is based on the characteristic velocity of the secondary 
flow : 

where K is the thermal diffusivity of the liquid metal. 
In spite of the small thermal diffusi~ty for NaK 
(K z 2.6x IO-’ m2 s-’ at lOO”C), for stronger 
magnetic-field strengths and for the lower limit of 
typical operating speeds, Pe, is sapiently small 
that secondary-flow heat transport, or convection, 
is neglected. 

The three dimensionless parameters, the flow 
regime, the orientation of the magnetic field, and the 
electric potential difference across the rotor gap 
(which defines the total current) determine the tem- 
perature distribution. The strength of the magnetic 
field, which also plays a role in determining the tem- 
perature distribution, can be taken into account 

through the Hartmann number : the stronger the mag- 
netic-field strength, the larger the Hartmann number. 

The tlow regime for a typical homopolar device 
ranges from Iaminar to turbulent, depending on the 
rotor tip velocity. While the essential characters of the 
temperature distribution is not dependent on the flow 
regime, there are si~ifi~nt differences. Under similar 
operating conditions (i.e. total current and magnetic- 
field orientation and strength), the temperature gradi- 
ents and the maximum temperature for a turbulent 
flow are typically smaller than for a laminar flow. 
These changes can be attributed to turbulent mixing 
which dramatically reduces the peak velocity and the 
velocity gradients within the central core region of the 
liquid metal [3,4]. Near the rotor tip and concentric 
stator surface the velocity gradients increase. The net 
result, however, is a decrease in the total viscous dis- 
sipation, below its laminar value. Because the laminar 
flow regime generally gives rise to larger maximum 
temperatures and temperature gradients than does the 
turbulent flow regime, this paper treats the laminar 
flow regime only. 

The definition of the magnetic fietd orientation 
and the electric potential difference across the rotor 
gap are intimately tied to the geometry, Therefore, 
before discussing these parameters, a description of a 
model of the liquid-metal sliding electrical contact for 
a homopolar device is necessary. The radius of the 
rotor is significantly larger than the rotor gap, i.e. 
R >> 1, so the problem may be treated in a Cartesian 
coordinate system (Fig. 1). With the origin at the 
center of the axial stator surface, the p-axis points 
radially inward, the z-axis is axial, and the x-axis is in 
the azimuthal direction. The dimensionless length of 
the rotor face is 2b. Liquid metal is confined to the 
radial gap region which has a dimensionless height of 
one. The dimensionless thickness of each stator side 
is s, while the radial distances from the liquid metal 
to the coolant channels in the rotor and stator are t, 
and ts, respectively. We will assume a known location 

Shat Centerline 

FIG. 1 I Geometry of a model liquid-metal sliding electrical 
contact. 
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for the free surface, _r = 1. The free surfaces extend 
from the sides of the rotor to the stationary side walls 
(the side stators), and the dimensionless length of each 
free surface is a. 

The orientation of the magnetic field is defined in 
terms of 0 which represents the angle between the 
local magnetic-field vector and the y-axis. For differ- 
ent sliding electrical contacts in a homopolar device, 
the local magnetic-held orientation varies from radial 
(0 = 0) to axial (H = 7c/2 rad). The magnetic field is 
normalized by B, so that the dimensionless magnetic 
field is given by B = cos By+sin Oi, where i, y and t 
are unit vectors. 

The electrical conductivity of the solid parts is sig- 
nificantly greater than the electrical conductivity of 
the liquid metal. Therefore, we will take the solid 
parts to be perfect electrical conductors. The electric 
potential is set to zero at the stator surfaces (r = 0 for 

1~1 < (afb) and 121 = (~l+h) for 0 $ ,r d 1). From 
Ohm’s law, the axial component of the current density 
is zero along the rotor tip (r = 1, for 1~1 d h). Conse- 
quently, the axial component of the electrostatic elec- 
tric field balances the axial component of the induced 
electric field due to the motion of the rotor across the 

magnetic field. i.e. 

Therefore, the velocity field and the current densities 
are determined prior to the temperature field. 

As discussed in Section 1. the primary. azimuthal 
flow is driven by the motion of the rotor, while the 
secondary flow is driven by the centrifugal force. The 
radial and axial current densities, which are associated 
with the primary azimuthal flow, arc normalized by 
otiB. The azimuthal current density. a secondary-flow 
quantity, is normalized by aU,B. From these non- 
dimensionalizations, 

where the superscript * denotes a dimensional par- 

ameter and,j,,,i, and,j, are the electric current densities 
directed azimuthally, radially inward and axially. 
respectively. From this and statements made in Section 
I, we may conclude that for large values of N. the 
magnitudes of the primary flow variables are sig- 
nificantly greater than the magnitudes of the sec- 
ondary flow variables. Therefore. the secondary-flow 
quantities can be neglected. 

With the geometry and assumptions given. the 
dimensionless governing equation for the temperature 
distribution within the liquid metal is 

where Cp is the dimensionless electric potential func- 
tion and the dimensionless primary azimuthal velocity 
u is one at y = I Integrating this relation with respect 
to Z, we obtain $J = (PC,+ z cos 0 at _r = 1, for Irl < 6, 
where 4” is the electric potential at 1’ = I, z = 0 and 
represents the average dimensionless voltage differ- 
ence across the rotor gap. 

The last set of parameters that influence the tem- 

perature distribution are the transport properties. If 
the temperature differences are not too large, as a 
first approximation, the transport properties can be 
considered constant. This paper treats a steady, latni- 
nar axisymmetric MHD flow with arbitrary Hart- 
mann number, large interaction parameter, small 
Peclet number and constant transport properties. Sec- 
tion 2 describes the problem formulation and the 
numerical analysis used to obtain the tempcraturc 
distribution. Section 3 presents the results of a para- 
metric study involving 0 and 4,,, and Section 4 pro- 
vides a discussion of those results. 

2. PROBLEM FORMULATION AND 

NUMERICAL ANALYSIS 

The governing equations are comprised of the 
Navier-Stokes equations, conservation of mass, 
conservation of energy, Maxwell’s equations, and 
Ohm’s law. For liquid metals, which are incompres- 
sible, the energy equation decouples from the other 
equations if the transport properties are constant. 

where TLM denotes the dimensionless temperature ot 
the liquid metal. The temperature is normalized by 

where Tt, is the dimensional liquid metal tempera- 
turc, To is the temperature at the wall of the coolant 
channel, and k is the thermal conductivity of the liquid 
metal. The terms that appear on the right-hand-side 
of equation (1) represent the viscous dissipation, 

and the Joulean heating, Jo: + j,‘. There is no Joulean 
heating within the solid pdrtS because they have been 
assumed to be perfect electrical conductors. Fur- 
thermore, with the assumption that the transport 
properties are constant, the temperature distribution 
equation within both the rotor and stator is governed 
by Laplace’s equation, 

Here, the subscript S denotes the stator, R the rotor. 
and 
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We will assume that the cover gas is a thermal 
insulator so that 

__ = 0, at y = 1, for (b( <z < la+bl. 
ay 

This assumption is reasonable since the thermal con- 
ductivity of the liquid metal is two to three orders 
of magnitude larger than that of the cover gas, e.g. 
k z 24.4 W m-’ K-’ for NaK at approximately 
100°C and k z 0.021 W m-’ K-’ for argon at 
approximately 100°C. At the interface of the liquid 
metal and the stator or rotor, the temperature and 
heat flux are continuous. For example, at the liquid- 
metal-rotor interface, 

?rn ?rn 
TLM = TR, /$+=&al,, 

aY ay 
at y = 1, for /zI < 6, 

where kR is the thermal conductivity of the rotor. The 
side walls of the rotor, the external side walls of the 
stator, and the stator walls at y = 1 are thermal insu- 
lators. The dimensionless temperature difference is set 
tozeroaty=t,forlzl <(a+b+s)andaty= l+t, 
for IzJ < b. 

The governing equations together with the bound- 
ary conditions form a well-posed problem which was 
solved using a full numerical technique. We introduce 
a mesh which is non-uniform in both y and z using 
trigonometric functions [4]. The spatially differenced 
versions of equations (1) and (2) are solved using 
a Gauss-Seidel relaxation method. The convergence 
criterion is based on the difference between the new 
iteration and the previous iteration : 

where the summations are taken over the entire dis- 
cretized domain, ( )” represents the current iteration, 
( )“-I represents the previous iteration, T,,, is the 
dimensionless temperature difference at y = y, and 
z = zk, and E is a small number, typically lo-‘. 
Once this type of convergence criterion is achieved, the 
residuals are calculated to ensure that the governing 
equations are indeed satisfied. In all cases treated, the 
solution converged rapidly, and the residuals were 
small, 0( lo- ‘). In addition, we refine the spatial grid 
until the results are independent of the grid spacings. 

Given that no experimental data are available for 
this problem, we tested our results using a second 
numerical technique. We chose a hybrid method 
[7] that matches a numerical solution in the liquid 
metal and side stators (where 0 & y < 1, for Iz/ ,< 

(a+b+s)) with an analytical solution in the axial 
stator and rotor. The results from the full numerical 
solution were in excellent agreement with the results 
from the hybrid solution. 

3. RESULTS 

Here we consider the effects of varying the total 
current and the magnetic-field orientation on the tem- 

perature distribution. A Hartmann number of five is 
chosen for all cases. It represents an intermediate 
value within the parameter range for liquid-metal slid- 
ing electrical contacts. Increasing the Hartmann num- 
ber would result in larger EM body forces which 
would drive larger velocities and produce larger cur- 
rent densities. This would cause an increase in the 
viscous dissipation and Joulean heating and a sub- 
sequent increase in the maximum temperature and in 
the temperature gradients. 

The total current is determined, in part, by 40, 
which represents the dimensionless voltage drop 
across the rotor gap. There is a special case with Z = 0, 
where Z is the total dimensionless current per unit 
length of channel. This case is termed the no-load 
case. Z = 0 does not imply that there are no currents, 
but rather that the net or total current is zero. The 
average electrostatic electric field then balances the 
average induced electric field : V4 = % x (cos @ + 
sin 02). With 4 = 40+z cos 0 along the rotor tip 
and 4 = 0 at the stator walls, we encounter three 
distinct possibilities when Z = 0. 

l With a radial magnetic field, B = 0 and 4 = 40+z 
along the rotor tip. If 40 is set to zero, the net voltage 
difference across the rotor gap is zero. However, for 
z > 0,4 = z > 0 along the rotor tip, and current flows 
from the rotor to the stator; for z < 0,4 = z < 0, and 
current flows from the stator to the rotor. The Joulean 
heating is non-zero, in spite of the fact that the total 
current is zero. 
l With an axial magnetic field, 0 = a/2 and 4 = &, a 
constant, along the rotor tip. From a one-dimensional 
analysis [ 11, $0 = - 0.5 for Z = 0. For the two-dimen- 
sional problem, 40 = - 0.48, which is slightly smaller 
than -0.5 because currents fringe at the rotor corners 
giving a smaller average j,,. With 40 < 0, if there is 
any current, it flows from the stator to the rotor 
because the electric potential is constant along y = 1 
for IzI ,< b. However, with Z = 0, the average electro- 
static electric field is balanced by the average induced 
electric field, leaving j, essentially zero. If there is any 
current, it will fringe at y = 1, z = +b and will result 
in a small j, that is positive for z = -b and negative 
for z = t-b. The Joulean dissipation will be small. 
l With a skewed magnetic field, say i3 = 7~14, 4 = 
$0+z/,,/2. For a zero total current, +0 = -0.1535. 
This possibility is similar to the radial field case in that 
there is an eddy current : current flows from the rotor 
to the stator for z > 0.2171 and from the stator to the 
rotor for z < 0.2171, but the total current is zero. 
Here, too, the Joulean dissipation is non-zero. The 
eddy currents represent a loss of productive electrical 
power and are to be avoided. 

What distinguishes the radial field case from a 
skewed field case is that the Joulean dissipation is 
maximum for the radial field case. Therefore, the rad- 
ial field represents the worst possible case in terms of 
lost productive electrical power. To understand why 
the Joulean dissipation is larger for the radial field 
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case we must consider how the eddy current is cal- 
culated. For a sufficiently large magnetic-field 
strength. current flows along magnetic-field lines. The 
distance that currents travel from the rotor tip to the 
axial stator surface is set 0. This length is a minimum 
when 0 = 0. If we let q represent the coordinate that 
is parallel to magnetic-field lines, ,& the q-component 
of the electric current density and (bK the value of the 
electric potential at the rotor tip for a specifeid value 
for q> then 

(;Cj 
.Jl = - ^ = 

A4 _ & 
C?j 4 set 0 

The eddy current is the product of lj,,I with the cross- 
sectional area through which the electric current den- 
sity flows. The cross-sectional area is proportional to 

cos 0. Therefore, the eddy current is proportional to 
co? 0 and is a maximum for 0 = 0. 

For all the results presented, the ratio of the thermal 
conductivity of the solid parts to the liquid metal is 15, 
a = 3.12, h = 9.88, s = 3.5, tK = 2.0, and ts = 3.1. 
Furthermore, because the aspect ratio of the rotor gap 
is 26 : 1, the radial axis has been stretched by a factor 
of two for the temperature distribution contour lines 
and by a factor of ten for the velocity and current 
density stream function contour lines. The entire com- 
putationaldomain [-ts d_v < l+t,, 1~1 < (u+h+s)] 
is used in the figures for the temperature distri- 
bution, and only the liquid-metal region is shown 
for the velocity and current density stream function 

contour lines. 

Vuriations with total current 
We consider two values of I for 0 = 0: I = 0, the 

no-load case, and I = - 100, where the current flows 
from the rotor to the axial stator. The isotherms for 
I = 0 and I = - 100 are shown in Figs. 2(a) and (b). 
respectively. For I = O($J, = 0), the dimensionless 
temperature ranges from zero at the coolant channels 
(at,r= -ts,forlzl < (n+h+s)andat~~= l+t,,for 
1~1 < h) to 15.66 at J) = 0.5, z = t_ 9.35. The isotherms 
are symmetric about r = 0. The temperature is not 
constant in the central core region but is O(10 ‘). The 
contour levels arc too coarse to plot temperatures of 
this magnitude. The same type of problem occurs in 
the solid parts, where the temperatures ate not con- 
stant but too small for the contour lines to be resolved. 

In the solid parts, there are no volumetric heat sources. 
Energy is transferred to these parts from the liquid 
metal via conduction. With the thermal conductivity 
of the solid parts an order of magnitude larger than 

that of the liquid metal and the only source of energy 
to the solid parts coming from the liquid metal, the 
temperature within the solid parts is significantly 

smaller than the maximum temperature in the liquid 
metal. It is seen from Fig. 2(a) that the temperature 

is continuous at the liquid-metal-solid interface but 
that the temperature gradients are not. The dis- 
continuity in the gradients arises because the thermal 
conductivity of the liquid metal does not equal the 
thermal conductivity of the solid parts. For I = - 100, 

the minimum temperature is again zero at the coolant 

channels. The maximum temperature. located at 

FIG. 2. Isotherms for I = 0 and I = - 100 with 0 = 0. (a) I = 0 : Contour intervals are 2.61. (b) I = - 100: 
Contour intervals are 6.28. 
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FIG. 3. Velocity and current density stream line contours for Z = 0 and 0 = 0. (a) Velocity contour lines : 
contour intervals are 1.215. (b) Current density stream line contours: contour intervals are 42.76. 

y = 0.5, z = 9.35, is 37.66. The isotherms are not sym- 

metric about z = 0. The temperature is not constant 
in the left-half of the domain, but the contour levels 
are too coarse to distinguish these isotherms. In fact, 
the character of the isotherms on the left-half is very 
similar to that on the right-half, but the magnitudes 
of the temperature in the left-half are significantly 
less with a maximum temperature of approximately 
3.3 

The behavior of the velocity and the current density 
determine the viscous dissipation and Joulean heating, 
which in turn govern the temperature dist~bution. 
Therefore, knowledge of the nature of the velocity 
and the current density is essential. Figure 3(a) rep- 
resents the velocity contour lines in the liquid metal 
for Z = 0. The velocity distribution in the central core 
is characteristic of Couette flow, u = y. These contour 
lines do not appear in Fig. 3(a). With a uniform vel- 
ocity gradient equal to one, there is uniform viscous 
dissipation within the core region. Two symmetric 
interior layer jets flow in the minus x-direction with 
peak velocities of -6.29. These jets are symmetric 
because the electric potential along the rotor tip is 
antisymmetric : +(I, z) = z, for /z/ < b [2]. The viscous 
dissipation is large at the center of the velocity jets and 
near the rotor corners, where the velocity gradients are 
large. The current density stream lines, defined as 

are vertical throughout the core region, indicating that 
the current density in the z-direction is zero (Fig. 

3(b)). Therefore, the current density is aligned with 
the magnetic field, and, as a consequence, there are 
no EM body forces in the core region. Without an 
EM body force, the flow must be pure Couette flow, 
as it is. The current density stream lines show that 
j,(-z) = -j,,(+z) with j, > 0 for z < 0 and jeV < 0 
for z > 0. Although Fig. 3(b) does not show any 
fringing of current density stream function lines, there 
is a slight fringing of these lines near both rotor 
corners. The fringing is due to the discontinuity in the 
gradient of the electric potential. It is this fringing that 
drives the interior layer jets. The Joulean heating is 
largest where the current densities are a maximum, 
near the rotor corners. The isotherms in Fig. 2(a) are 
symmetric because the viscous dissipation and the 
Joulean heating are themselves symmetric about 
2= 0. 

For I = - 100, the velocity contour lines and the 
current density stream lines, which are not shown, 
are not symmetric about z = 0. The electric potential 
along the rotor tip is now $(l,z) = (h,+z = 5.O+z. 
At z = +b, 4 = 14.88 and -4.88, respectively, so the 
electric potential difference at z = +b dominates. The 
flow in the central core region remains a Couette flow, 
and the velocities in the two interior layers are still in 
the minus x-direction. But, now, the magnitude of 
the velocity in the right interior layer is significantly 
greater than the magnitude of the velocity in the left 
interior layer, and the velocity gradients are very large 
in the center of the right velocity jet. The current 
density stream lines are still parallel to the magnetic 
field in the central core region, but more current passes 
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through the region - 5 < z d (cc+h) than through 
-(u+h) <Z < -5. 

For both I = 0 and - 100, the hot spots arc not 
located at the rotor corners. _i’ = I. z = kh but at 

r = 0.5 and z = -1-9.35. The total dimensionless vis- - 
cous dissipation. P,,, increases from 279 to 343 and 
the total dimensionless Joulean heating, P,, from 
1.67 x lo4 to 2.93 x IO4 when I goes from zero to 
- 100. The total viscous dissipation and the total 
Joulean heating arc normalized by 27-cRp(” and 
defined as 

and 

The Joulean heating is nearly 60 times larger than the 
viscous dissipation for I = 0 and 85 times larger for 
I = - 100. In these two cases, the Joulean heating 
dominates. 

Variations with the magnetic$eld orientation 

As the magnetic-field orientation varies from radial 
to axial, the total viscous dissipation and total Joulean 
heating behave as indicated in Table 1. These results 

are for I = 0. The total Joulean heating decreases as 
0 increases. However, the total viscous dissipation 
does not : P,, is largest at f3 = n/4, the skewed magnetic 
field. With a radial magnetic-field orientation, the vel- 
ocity field (Fig. 3(a)) is comprised of three distinct 

flow patterns : Couette flow in the central core region 
with a uniform velocity gradient, jet-like regions under 
each rotor corner with large velocity gradients, and a 
stagnant region near the side stators with small vel- 
ocity gradients. At the other extreme, an axial field, the 
flow is essentially Couette flow, with uniform velocity 
gradients. The region between the rotor corners and 
the side stators has larger velocity gradients as the side 
stators retard the flow. The velocity contour lines for 
a skewed magnetic field (Fig. 4(b)) have the jet-like 
regions and the stagnant regions that are seen in the 
radial field case, but the central core region differs 
significantly. For a sufficiently strong radial magnetic 
field, there is no EM body force in the central core 
region or in the Hartmann layer at y = 1. (A Hart- 
mann layer is similar to the boundary layer in an 
OHD flow.) For a sufficiently strong skewed magnetic 
field, there is no EM body force in the central core 
region, but a large EM body force is created in the 

Table 1 

p, p,i 

1.67 x IO4 279.1 
5.11 x lo3 958.1 
6.00 x IO- ’ 22.7 

Hartmann layer. The current in the core region is 
aligned with the magnetic field, which is at some angle 
to the y-axis. The solid parts are treated as a perfect 
electrical conductors, therefore current must enter 
perpendicularly to the rotor tip. In other words, the 
current density can have only a radial component as 
it enters the rotor at _r = 1. So. as the current passes 
through the Hartmann layer, it crosses magnetic field 
lines, creating an EM body force. The EM body force 
is in the positive azimuthal direction near z = ~ h, 

reinforcing the viscous effects of the rotor motion. As 
Z increases toward the origin, the EM body force 

decreases. Eventually, the EM body force is in the 
negative azimuthal direction, cancelling the effect of 
the rotor motion. The velocity is large and in the 
positive azimuthal direction near : = --/I and is large 
and negative near z = fh. The gradients are not uni- 
form nor are they particularly small. Within both free 
shear layers, the velocity is in the negative azimuthal 
direction. Consequently, when the core velocity near 
: = -b encounters the free shear layer velocity, large 
gradients develop. Near z = + h, the core velocity and 
the free shear layer velocity reinforce each other. also 
creating large velocity gradients. The result is that the 
viscous dissipation is larger for a skewed magnetic 
field than for a radial magnetic field. 

The isotherms for 0 = 71114 and I = 0 are shown 

in Fig. 4(a). These isotherms do not appear to be 

radically different from the radial magnetic fieId 
isotherms. Two hot spots exist: one centered under 
each rotor corner. In the left hot spot, the maximum 
temperature, approximately 7.9, occurs near the rotor 
corner, and in the right hot spot. the maximum tem- 
perature. approximately 4.7, occurs near r = 0.5. The 
temperature distribution in the region between the hot 
spots is not constant, but it is an order of magnitude 
smaller than the temperature within the hot spots. In 
the side stators, as Jz] goes from (cc+h) to (a+h+s). 
the temperature, which is an order of magnitude 
smaller than in the hot-spots, decreases. Again. the 
behavior of the velocity and thecurrent density stream 
function determine the structure of the isotherms. 

The nature of the velocity contours and the current 
density stream lines shown in Figs. 4(b). (c) have been 
discussed previously [2], so details will not be provided 
here. What is most relevant to the temperature dis- 
tribution problems is that the viscous disssipation is 
greatest near the left interior layer and in the right ‘jet’ 
region. In the central core region the velocity is a 
superposition of a Couette flow and an clectro- 
magnetically driven flow, and the magnitude of the 
velocity gradients is not as large as it is in the regions 
near the rotor corners. Near the side stators. 
1~1 = (c~+h), the flow is essentially stagnant, so there 
is little viscous dissipation. The current density stream 
function exhibits a similar behavior with the Joulcan 
dissipation greatest near the rotor-corner--free-surface 
interface. Based on these contours, the isotherms 
should be most concentrated in the left interior layer 
and in the right ‘jet’ region. Figure 4(a) bears this out. 
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FIG. 4. Temperature, velocity and current density stream function distributions for I= 0 and 0 = n/4. 
(a) Isotherms: contour intervals are 1.32. (b) Velocity contour lines: contour intervals are 1.65. 

(c) Current density stream line contours : contour intervals are 21.36. 

The tem~rature distribution within the liquid 
metal and solid parts for B = n/2 and I = 0 is shown 
in Fig. 5(a). In the central core region, the temperature 
distribution is a parabolic function of y. The mag- 
nitude of the temperature decreases away from 
y = 0.5. If we were to consider a one-dimensional 
analysis, for the no-load case (#,, = -0.5) 

M-2y2 
T(Y) = - -+Ay+B 2 

where the coefficients A and B can be determined from 
the temperatures at y = 0 and y = 1. The first term 
Nw2y2/2 is associated with the viscous dissipation. For 
the axial field case jY = 0, and there is no cont~bution 
to the temperature distribution from Joulean heating. 
The results from the one-dimensional solution agree 
with the results from the two-dimensional solution. 
As we move outward toward the rotor corners, the 
temperature distribution loses its parabolic character 
and the temperature becomes larger near z = i_ b. The 
maximum temperature is 0.0129 at y = 1, near the 

rotor corners. Towards the stator sidewalls, near the 
free surface, the temperature distribution is essentially 
a linear function of z since the free surface is a thermal 
insulator, dT,,/ay = 0. 

Again, the behavior of the velocity and the current 
density determine the temperature distribution. (We 
will not present figures of the velocity and current 
density contour lines.) The velocity distribution in the 
central core region is characteristic of Couette flow 
with a uniform velocity gradient equal to one. Toward 
the stator sidewalls, the flow is retarded by the pres- 
ence of the walls, As a consequence, larger velocity 
gradients develop. However, even Iarger velocity 
gradients evolve near the rotor corners as a result of 
the velocity discontinuity: at the rotor face, the vel- 
ocity is one, and at the free surface the normal deriva- 
tive of the velocity is zero. Therefore, viscous dissi- 
pation is largest near the rotor corners. The current 
is essentially zero in the core region. But, near the 
rotor corners, the electric potential gradient dis- 
continuity at y = 1, Jz( = b causes the current density 
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(a) 

(b) 

FG. 5. Effects of Joukdn heating on the temperature distribution. (a) Isotherms for I = 0 and H = n 2 
The contour intervals are 2.15 x 10-j. (b) OHD isotherms. The contour intervals are 3.53 x IO- ‘, 

stream function to fringe, and relatively small currents 

are generated. The result is that Joulean heating. 
although still very small, is maximum near the rotor 
corners. 

The regions near the rotor corners are the primary 
source of viscous dissipation and Joulean heating 
when 0 = n/2. Due to the retarding effect of the side 
stators, regions near 1~1 = f (a+!~), for 0 < r < 1, 
provide some viscous dissipation and Joulean heating 
but not to the same degree as do the rotor corner 
regions. As expected, the isotherms are most con- 
centrated in the rotor corners and the side-stator- 
free-surface regions, with the maximum temperature 
occurring near the rotor corners. 

To illustrate the effects of Joulean heating, consider 
a steady, laminar OHD flow whose sole volumetric 
heat source is due to viscous dissipation. The isotherms 
for the OHD case are shown in Fig. 5(b). The 
maximum temperature is 0.215 near the rotor corner 
at y = 1. The geometry in the OHD case is the same 
as in the MHD case. The ratio of the electric con- 
ductivities of the solid parts to the fluid also remains 
the same, 15. The isotherms look quite similar to those 
in Fig. 5(a) where B = 7c/2 and I = 0. This is to be 
expected because the velocity profiles are so similar. A 
Couette velocity profile exists in the central core 
region. Larger velocity gradients develop near the 
rotor corners due to the retarding effects of the side 
walls. In order to compare OHD to the MHD tem- 
perature values, we must consider the dimensional 
temperature. 

4. DISCUSSION AND CONCLUSIONS 

The non-dimensionalization used for the tem- 
perature is 

w-here T:, denotes the dimensional temperature. 
Typical parameter values are : o = 2.38 x 1 Oh S m ’ 
at 311 K, k = 22 W mm’ K ’ (the average value 
of the thermal conductivity between 20 and 100°C). 
QRL = 90 m s- ‘, and B is between 0.5 and 6 T. With 
these typical values, T&, - To = 8.76B’TL.,,,, where 
the results are in ~C. For B = 0.83 T, TzM- T, = 
598T,,‘C. For an OHD flow, 

T =!!??!!)‘T TM- 61 k LM 

With the dynamic viscosity ,LI = 6.5 x lo- ’ Pa s ‘. 

TFM - To = 0.239T,_,“C. The dimensional tem- 
perature difference at the maximum dimensionless 
temperature and with B = 0.83 T is 93.7”C for 0 = 0 
andI=0;225.3”Cfor0=OandZ= -100; 15.7C 
for H = rc/4 and I = 0; and 0.06”C for 0 = ~12 and 
I = 0. For an OHD flow, the dimensional temperature 
difference is 0.05”C for 7’L,M,,,,, = 0.215. The saturation 
temperature for NaK is TsAT = 825°C at 760 mm Hg. 
If T, = 2&1OO”C, T&r,,, is far below TsAr when 
B = 0.83 T. For 0 = 0, a substantial temperature 
difference of over 200°C is seen for I = - 100. The 
maximum dimensional temperature difference is 



Heat transfer in liquid metals with electric currents and magnetic fields 521 

slightly larger for the MHD flow with 0 = 742, I = 0 
than for the OHD flow. This is the expected result 
since the velocity gradients are enhanced by the MHD 

effects. 
The dimensional results presented here are for a 

relatively small magnetic field strength. The dimen- 
sional temperature difference is proportional to the 
square of the magnetic-field strength, so for the larger 
magnetic field strengths it is quite possible that 

=%,, exceeds TSAT. We are confronted with two 
problems. First, as the temperature differences 
increase, the assumption that the transport properties 
are not functions of temperature becomes weak. 

Second,if TtMmar > TSAT, then the flow is not a single- 
phase flow but a two-phase flow. 

In 1978, Talmage and Walker [8] demonstrated 

that, given large temperature differences, the velocity 
and temperature distributions differ substantially 

for constant transport properties and temperature- 
dependent transport properties in a one-dimensional 
Hartmann flow. For liquids, as the temperature in- 
creases, the density, dynamic viscosity and electrical 
conductivity decrease and the thermal conductivity 
increases. Therefore, it is not possible to predict the 
temperature distribution without actually performing 
an analysis. The problem itself is further complicated 
by the fact that the governing equations for the pri- 

mary azimuthal velocity and the electric potential 
function cannot be decoupled from the energy equa- 
tion. Therefore, the velocity, electric potential and 
the temperature must be calculated simultaneously or 
iteratively. In addition, the governing equations for 
the electric potential in the rotor and stator will not 
reduce to Laplace’s equation as was the case for con- 
stant temperature transport properties. Fortunately, 
data for the transport properties as functions of tem- 
perature are readily available [9]. 

If the temperature differences are sufficiently large 

that T&, > TSAT, the problem must be treated as a 
two-phase flow which for MHD problems adds con- 

siderable complexity. 
In the radial field case, I = - 100 corresponds to a 

dimensional current of - 3336 A, which is a moderate 
electric current by the standards of homopolar 
devices. For those liquid-metal sliding electrical con- 

tacts that operate in the presence of a radial magnetic 
field, even for moderate magnetic-field strengths and 

electric currents, the temperature differences that 
develop within the liquid metal can be significant. 
These large temperature gradients at the rotor corners 
have the potential for creating significant thermal 
stresses at the rotor corners. For strong magnetic 
fields and large electric currents, the temperature 
differences are substantially larger, with the possibility 
that the flow is no longer a single-phase flow. 
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